On connection algebras of homogeneous convex cones
نویسندگان
چکیده
منابع مشابه
Relating Homogeneous Cones and Positive Definite Cones via T-Algebras
T -algebras are nonassociative algebras defined by Vinberg in the early 1960s for the purpose of studying homogeneous cones. Vinberg defined a cone K(A) for each T -algebra A and proved that every homogeneous cone is isomorphic to one such K(A). We relate each T -algebra A with a space of linear operators in such a way that K(A) is isomorphic to the cone of positive definite self-adjoint operat...
متن کاملCharacterization of the barrier parameter of homogeneous convex cones
We characterize the barrier parameter of the optimal self{concordant barriers for homogeneous cones. In particular, we prove that for homogeneous convex cones this parameter is the same as the rank of the corresponding Siegel domain. We also provide lower bounds on the barrier parameter in terms of the Carath eodory number of the cone. The bounds are tight for homogeneous self-dual cones.
متن کاملBornological Completion of Locally Convex Cones
In this paper, firstly, we obtain some new results about bornological convergence in locally convex cones (which was studied in [1]) and then we introduce the concept of bornological completion for locally convex cones. Also, we prove that the completion of a bornological locally convex cone is bornological. We illustrate the main result by an example.
متن کاملSimplicial arrangements on convex cones
We introduce the notion of a Tits arrangement on a convex open cone as a special case of (infinite) simplicial arrangements. Such an object carries a simplicial structure similar to the geometric representation of Coxeter groups. The standard constructions of subarrangements and restrictions, which are known in the case of finite hyperplane arrangements, work as well in this more general settin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1983
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496159663